“XIII Congresso Luso-Espanhol de Fisiologia Vegetal”
- Abstract Book -

Natacha Vieira, Nelson Saibo, M. Margarida Oliveira (Eds.)
Sociedade Portuguesa de Fisiologia Vegetal
ITQB - Oeiras, Portugal (Julho, 2013)

Impressão e Acabamento:
Dossier – Comunicação e Imagem, Lda.
www.dossier.com.pt

Depósito Legal nº 362078/13
S1/P36: GAS EXCHANGE MEASUREMENTS AND CHLOROPHYLL A FLUORESCENCE IN YOUNG PINEAPPLE PLANTS UNDER LONG DAY AND SHORT DAY PHOTOPERIODS

Nuno Rainha1,2, André Alcântara3, Violante Pacheco de Medeiros1,4, Cristina Cruz2,5, Anabela Bernardes da Silva3,5

1 Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, Portugal ccruz@fc.ul.pt
2 Centro de Biologia Ambiental (CBA), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
3 Center for Biodiversity, Functional & Integrative Genomics (BioFIG), Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
4 Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal
5 Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Pineapple (Ananas comosus) is a constitutive CAM (Crassulacean Acid Metabolism) plant and the most economically significant of the Bromeliaceae family. Vegetative growth in pineapple culture is the longest development stage and significant differences in plant physiology are described concerning geographical location and environmental factors specially temperature (Bartholomew et al., 2002). The aim of the present research was to determine the physiological response of young pineapple plant to long (16/8h light/dark, LDP) and short day (8/16h light/dark, SDP) photoperiods. Six-month old plants, propagated from crown segments of pineapple fruits were acclimatized for 4-6 weeks to both photoperiods (115-130 μmol.m$^{-2}$.s$^{-1}$ light intensity) at a night and day temperature of 21 and 36 $^\circ$C, respectively. The physiological assessments were performed by gas exchange measurements and PAM (Pulse Amplitude Modulation) fluorometry. Leaves were analysed in the start, middle and end of both light and dark periods. Electron transport rate (ETR), yield (Φ_{II}) and quenching parameters (qN, NPQ, qL, qP), were used to calculate ETRmax, optimum irradiance for maximum photosynthesis, photosynthetic efficiency, and scale coefficients associated to fit curves for each parameter. Gas exchange measurements, performed for 24 h cycles, showed CO$_2$ assimilation during the dark period assuring that the plants had CAM. Total CO$_2$ assimilation was estimated to be up to 4 times higher in SDP than in LDP plants and dependent on the thermoperiod. For instance, maintaining light period temperatures into the dark inhibit stomatal opening decreasing significantly CO$_2$ assimilation. Light curves were characterized by photoinhibition in both photoperiods being more pronounced in LDP plants. ETRmax and optimum irradiance were approximately twice higher for SDP compared to LDP plants. Maximum non-photochemical quenching (NPQmax) increased greatly during dark period resulting in a high-energy dispersion through heat emission when photosynthesis does not occur. Photosynthetic efficiency, yield and quenching scale coefficients for qP, qN and qL showed a circadian variation in both photoperiods. These results generate a set of equations (Ritchie 2008) of great importance since they can be used to estimate favourable circumstances for high photosynthesis in field conditions and predict the best lights regimes to induce fast vegetative growth under greenhouse conditions as practiced in the Azores (Portugal). Nevertheless, SDP seems to be more favourable to induce fast vegetative growth of pineapple plants.

Bartholomew et al. (2002). The pineapple: botany, production and uses. New York, USA, CAB International

Acknowledgments: Project funding by PROCONVERGÊNCIA – EU/FEDER program (RAAFDR-01-0482-FEDER-000003). Fellowships: Azorean Government (PhD fellowship of Nuno Rainha and post-doctoral fellowship of Violante Pacheco de Medeiros)