The Moroccan Association of Microbial Biotechnology and Protection of Natural Resources (MICROBIONA)

and

The Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakech

organize

In collaboration with:

IRD
Institut de recherche pour le développement

SFM
SociétéFrançaise de Microbiologie

The Second Edition of the International Congress:

MICROBIAL BIOTECHNOLOGY
FOR DEVELOPMENT
(MICROBIOD 2)

02-04 October 2012, Marrakech - Morocco

The congress venue: SEMIRAMIS Hotel

Coordination & Contact:
Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakech, MOROCCO
Tel: +212 (0) 524 43 46 49 Post: 517 - Fax: +212 (0) 524 43 74 12
E-mail: microbiob2@ucam.ma, Web site of the congress: www.ucam.ma/microbiona
Actes de la deuxième édition du congrès international :
"Biotechnologie microbienne au service du développement"

// Proceeding of the second edition of the international congress :
"Microbial Biotechnology for Development"

(MICROBIOD 2)

Marrakech, MAROC
02-04 Octobre 2012

"Ce travail est publié avec le soutien du Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique et du CNRST".

MICROBIONA Edition

www.cea.ma/microbiona
COI-26
Effect of the mycorrhizal-like fungus *Piriformospora indica* and phosphorus fertilization on rock phosphate solubilization and growth of tomato

FOUAD Mohamed Oussouf(1), Cristina Cruz(2) and Ahmed QADDOURY(1)

(1): Equipe biotechnologie végétale et agrophysiologie des symbiose, FST-Marrakech, Maroc. E-mail of corresponding author: qadahmed@gmail.com

(2): Laboratory of plant biology university of Lisbon, Portugal

Background: The *Piriformospora indica* is an endophytic fungus that was isolated in India. In contrast to the obligate biotrophic mycorrhizal fungi, *P. indica* can be cultivated easily on synthetic media. Earlier works established that *P. indica* increased biomass in several host plants belonging to a wide range of taxa. The
enhanced biomass results from improved nutrient status. In particular, *P. indica* mediate phosphorous supply. The objective of this study is to evaluate the role of *P. indica* in solubilizing rock phosphate and enhancing growth of tomato.

Methods: Young germinations of tomato (Campbell 33) were grown on inert substrate containing 5g of rock phosphate and inoculated or not with *P. indica*. Cultures were irrigated with Hoagland solution where phosphorus concentration was reduced to 0%, 25%, 50% or 100%.

Results: Results obtained showed that the ability of *P. indica* to colonize roots of tomato was negatively affected by soluble phosphorus concentration. The highest intensity of root colonization (45%) was observed with nutrient solution strongly P-deficient (25%). *P. indica* significantly increased (~40%) plant height, shoot and root fresh weight, leaf number and shoot and root dry weight. This positive effect was more spectacular under sever P-deficiency. Without any soluble phosphorus, P contents of leaves and roots were two time higher in inoculated plants. Moreover, the phosphorus use efficiency and the foliar content of K and Na were significantly higher in inoculated plants. Similarly, high acid phosphatase activity and high sugar and protein contents were observed in inoculated plantlets.

Conclusion: *P. indica* seems well suited for solubilizing phosphate and enhancing tomato plant growth and is more efficient under P-deficiency.

Keywords: Tomato, *Piriformospora indica*, phosphate solubilization, Growth, phosphatase.